The equations in question 1 all have the same coefficients for either \(x\) or \(y\). One of these variables can be eliminated by simply adding or subtracting the equations. Solve the following equations:

Question 1

(a) \(   2x + y = 10\) (b) \(   x + 8y = 55\) (c) \(   3x - 4y = 4\) (d) \(   7x - 3y = 66\)
  \(   2x + 4y = 22\)   \(   x - 3y = -11\)   \(   2x + 4y = 36\)   \(   2x - 3y = 21\)
 
(e) \(   7x - 6y = 10\) (f) \(   5x + 2y = 29\) (g) \(   4x + 2y = -2\) (h) \(   6x - 4y = -13\)
  \(   4x - 6y = -2\)   \(   3x - 2y = 11\)   \(   7x + 2y = 4\)   \(   6x + 2y = 11\)
 
(i) \(   3x + 5y = 41\) (j) \(   12x +12y = -3\) (k) \(   5x + 8y = 51\) (l) \(   8x + 4y = 3\)
  \(   x + 5y = 37\)   \(   2x -12y = -4\)   \(   2x - 8y = -30\)   \(   8x + 6y = 2\)