Multiply one equation to make the number of \(x\)'s or \(y\)'s the same. Then add or subtract the equations to eliminate either \(x\) or \(y\). Solve the following equations:

Question 2

(a) \( 2x + y = 11\) (b) \( 6x + 5y = 8\) (c) \( 3x + 2y = 8\) (d) \( 4x - 3y = 15\)
  \( 4x + 8y = 52\)   \( 3x + 3y = 6\)   \( 6x + 5y = 17\)   \( 2x - 6y = 12\)
 
(e) \( 12x - 3y = -6\) (f) \( 6x + 2y = 3\) (g) \( 4x + 5y = 12\) (h) \( 2x + 5y = 11\)
  \( 4y - 4x = 11\)   \( 10x - 10y = -3\)   \( 2x - 6y = 40\)   \( 4y - 2x = 7\)
 
(i) \( 8x + 4y = -2\) (j) \( x + 7y = 33\) (k) \( 10x + 6y = -22\) (l) \( 3x - 4y = 1\)
  \( 4x - 2y = 7\)   \( 2x - 3y = -19\)   \( 5x - 3y = 19\)   \( 4x + 8y = -4\)